最近因为生病好久没刷题,今早开始打了一场 Leetcode 的周赛,来写个题解,今早状态还行,,BTW 以后每周都会打周赛,争取写题解
Leetcode 1341. The K Weakest Rows in a Matrix#
描述:
Given a m * n matrix mat of ones (representing soldiers) and zeros (representing civilians), return the indexes of the k weakest rows in the matrix ordered from the weakest to the strongest.
A row i is weaker than row j, if the number of soldiers in row i is less than the number of soldiers in row j, or they have the same number of soldiers but i is less than j. Soldiers are always stand in the frontier of a row, that is, always ones may appear first and then zeros.
Example 1:
Input: mat =
[[1,1,0,0,0],
[1,1,1,1,0],
[1,0,0,0,0],
[1,1,0,0,0],
[1,1,1,1,1]],
k = 3
Output: [2,0,3]
Explanation:
The number of soldiers for each row is:
row 0 -> 2
row 1 -> 4
row 2 -> 1
row 3 -> 2
row 4 -> 5
Rows ordered from the weakest to the strongest are [2,0,3,1,4]
题面很简单,其实这道题就是二进制的处理,Python 里面就暴力出奇迹了
from typing import List
class Solution:
def kWeakestRows(self, mat: List[List[int]], k: int) -> List[int]:
if not mat:
return []
number = []
for i in range(len(mat)):
number.append((int("".join([str(x) for x in mat[i]]), 2), i))
number.sort()
return [x for _, x in number[0:k]]
1342. Reduce Array Size to The Half#
描述:
Given an array arr. You can choose a set of integers and remove all the occurrences of these integers in the array.
Return the minimum size of the set so that at least half of the integers of the array are removed.
Input: arr = [3,3,3,3,5,5,5,2,2,7]
Output: 2
Explanation: Choosing {3,7} will make the new array [5,5,5,2,2] which has size 5 (i.e equal to half of the size of the old array).
Possible sets of size 2 are {3,5},{3,2},{5,2}.
Choosing set {2,7} is not possible as it will make the new array [3,3,3,3,5,5,5] which has size greater than half of the size of the old array.
这个题题面也很简单,给定一个数组,选择一组数字移除,被移除后的数组数量小于等于之前的一半,求最少选择多少数字能达到要求
哈希表,O (N) 的做法
from typing import List
class Solution:
def minSetSize(self, arr: List[int]) -> int:
if not arr:
return 0
counter = {}
for i in arr:
counter[i] = counter.setdefault(i, 0) + 1
counter = {k: v for k, v in sorted(counter.items(), key=lambda item: item[1], reverse=True)}
total_count = 0
result_count = 0
for i, count in counter.items():
total_count += count
result_count += 1
if total_count >= len(arr) / 2:
break
return result_count
1343. Maximum Product of Splitted Binary Tree#
描述:
Given a binary tree root. Split the binary tree into two subtrees by removing 1 edge such that the product of the sums of the subtrees are maximized.
Since the answer may be too large, return it modulo 10^9 + 7.
Example 1:
Input: root = [1,2,3,4,5,6]
Output: 110
Explanation: Remove the red edge and get 2 binary trees with sum 11 and 10. Their product is 110 (11*10)
这个题的题面也很简单,给定一个带值的二叉树,移除某个二叉树的边,使之分割成为两个新的二叉树,求两个二叉树和的乘积最大
最开始很多人会被这道题唬到,但是实际上这道题就是一个二叉树的遍历,无论前中后序遍历,先遍历一次二叉树,求出二叉树节点值的总和,以及每个节点的左子树的和 left_sum 以及右子树的总和 right_sum
然后再次遍历,result=max((total_sum-left_sum)*left_sum),(total_sum-right_sum)*right_sum),result)
暴力求解即可
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
def maxProduct(self, root: TreeNode) -> int:
total_sum = self.sum_node(root)
result = 0
stack = []
node = root
while node or stack:
while node:
stack.append(node)
result = max(result, ((total_sum - node.left_sum) * node.left_sum))
result = max(result, ((total_sum - node.right_sum) * node.right_sum))
node = node.left
node = stack.pop()
node = node.right
if node:
result = max(result, ((total_sum - node.right_sum) * node.right_sum))
result = max(result, ((total_sum - node.left_sum) * node.left_sum))
return result % (10 ** 9 + 7)
def sum_node(self, root: TreeNode) -> int:
if not root:
return 0
left_sum = self.sum_node(root.left)
right_sum = self.sum_node(root.right)
root.left_sum = left_sum
root.right_sum = right_sum
return left_sum + right_sum + root.val
BTW 这段代码的 type hint 使用其实有点问题,我后面比赛完了改了一版
from typing import Optional, Tuple, List
class TreeNode:
val: int
left: Optional["TreeNode"]
right: Optional["TreeNode"]
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class TreeNodeWithSum:
val: int
left: Optional["TreeNodeWithSum"]
right: Optional["TreeNodeWithSum"]
left_sum: int
right_sum: int
def __init__(
self,
x: int,
left: Optional["TreeNodeWithSum"],
right: Optional["TreeNodeWithSum"],
left_sum: int,
right_sum: int,
):
self.val = x
self.left = left
self.right = right
self.left_sum = left_sum
self.right_sum = right_sum
class Solution:
def maxProduct(self, root: TreeNode) -> int:
total_sum,new_root = self.sum_node(root)
result = 0
stack:List[TreeNodeWithSum] = []
node = new_root
while node or stack:
while node:
stack.append(node)
result = max(result, ((total_sum - node.left_sum) * node.left_sum))
result = max(result, ((total_sum - node.right_sum) * node.right_sum))
node = node.left
node = stack.pop()
node = node.right
if node:
result = max(result, ((total_sum - node.right_sum) * node.right_sum))
result = max(result, ((total_sum - node.left_sum) * node.left_sum))
return result % (10 ** 9 + 7)
def sum_node(
self, root: Optional[TreeNode]
) -> Tuple[int, Optional[TreeNodeWithSum]]:
if not root:
return 0, None
left_sum, new_left_node = self.sum_node(root.left)
right_sum, new_right_node = self.sum_node(root.right)
return (
left_sum + right_sum + root.val,
TreeNodeWithSum(
root.val, new_left_node, new_right_node, left_sum, right_sum
),
)
BTW,这道题因为数据太大,需要对 10^9+7 取模,我智障的忘了取模,WA 了两次,罚时罚哭。。。我真的太菜了。。
1344. Jump Game V#
描述:
Given an array of integers arr and an integer d. In one step you can jump from index i to index:
i + x where: i + x < arr.length and 0 < x <= d.
i - x where: i - x >= 0 and 0 < x <= d.
In addition, you can only jump from index i to index j if arr[i] > arr[j] and arr[i] > arr[k] for all indices k between i and j (More formally min(i, j) < k < max(i, j)).
You can choose any index of the array and start jumping. Return the maximum number of indices you can visit.
Notice that you can not jump outside of the array at any time.
Input: arr = [6,4,14,6,8,13,9,7,10,6,12], d = 2
Output: 4
Explanation: You can start at index 10. You can jump 10 --> 8 --> 6 --> 7 as shown.
Note that if you start at index 6 you can only jump to index 7. You cannot jump to index 5 because 13 > 9. You cannot jump to index 4 because index 5 is between index 4 and 6 and 13 > 9.
Similarly You cannot jump from index 3 to index 2 or index 1.
这题的题面是这样,一个数组,里面有若干值,你可以从任意一个位置开始跳跃,一次只能跳一个,跳的时候需要满足规则,假定你从数组 i 位置起跳,每次可跳的范围是 x,那么你需要满足
-
i+x < arr.length 和 0<x<=d
-
i-x >=0 和 0<x<=d
同时假设你从 i 跳往 j,那么你需要保证 arr [i]>arr [j] 且 i 到 j 中的每个元素都满足 arr [j]<x<arr [i],求最多能跳多少个元素
最开始觉得这题是一个双头 DP 的题,嫌写起来恶心就懒得写,,但是后面比赛完了发现其实这个题其实单 DP 就能解决的,因为我们只能从高往低跳,于是我们可以先将元素排序后依次遍历,可以得出公式为 dp[i]=max(dp[i]+dp[j]+1)
其中 j 是从 i 起可以到达的索引值,DP 部分的复杂度为 O (DN) 但是因为需要提前排序,因此整体的时间复杂度为 O (logN+DN)
from typing import List
class Solution:
def maxJumps(self, arr: List[int], d: int) -> int:
length = len(arr)
dp = [1] * length
for a, i in sorted([a, i] for i, a in enumerate(arr)):
for di in [-1, 1]:
for j in range(i + di, i + d * di + di, di):
if not (0 <= j < length and arr[j] < arr[i]):
break
dp[i] = max(dp[i], dp[j] + 1)
return max(dp)
总结#
很久没刷题了,手还是有点生,在前面几个签到题上花了时间,,而且犯了低级错误,,所以以后一定要坚持刷题了。。BTW 这次的周赛题感觉都很简单,感觉像是被泄题后找的 Backup,好了就先这样吧,我继续卧床养病了。。