Manjusaka

Manjusaka

聽說你會 Python (2):Python 高階數據結構解析

前言#

之前寫過一篇《聽說你會 Python ?》的文章,大家反響都還不錯,那麼我想乾脆把這個文章做成一個系列,繼續講解一下 Python 當中那些不為人知的細節吧。然後之前在和師父川爺討論面試的時候,川爺說了一句 “要是我,我就考考你們怎麼去實現一個 namedtuple ,好用,方便,又能區分人”,說者無心,聽者有意,我於是決定在這次的文章中,和大家聊一聊 Python 中一個特殊的高階數據結構, namedtuple 的實現。

Let's begin#

namedtuple#

介紹#

tuple 是 Python 中 build-in 的一種特殊的數據結構,它是一種 immutable 的數據集合,我們經常會這樣使用它

def test():
    a = (1, 2)
    print(a)
    return a


if __name__ == '__main__':
    b, c = test()
    print(a)

Right,很多時候我們會直接使用 tuple 來進行一些數據的 packing/unpacking 的操作。OK,關於 tuple 的科普就到這裡。那么什麼是 namedtuple 呢,恩,前面不是說了 tuple 是一種特殊的數據集合麼,那麼 namedtuple 是其一個進階(這不是廢話麼)。它將會基礎的 tuple 抽象成一個類,我們將自行定義變量的名稱和類的名稱,這樣我們可以很方便的將其復用並管理。具體的用法我們可以看看下面這個例子

if __name__ == '__main__':
    fuck=namedtuple("fuck", ['x', 'y'])
    a=fuck(1,2)
    print(a.x)
    print(a.y)

恩,這樣看起來貌似更直觀了點,但是,但是,但是,我猜你肯定想知道 namedtuple 是怎麼實現的,那麼我們先來看看代碼吧

詳解#

_class_template = '''\
class {typename}(tuple):
    '{typename}({arg_list})'

    __slots__ = ()

    _fields = {field_names!r}

    def __new__(_cls, {arg_list}):
        'Create new instance of {typename}({arg_list})'
        return _tuple.__new__(_cls, ({arg_list}))

    @classmethod
    def _make(cls, iterable, new=tuple.__new__, len=len):
        'Make a new {typename} object from a sequence or iterable'
        result = new(cls, iterable)
        if len(result) != {num_fields:d}:
            raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result))
        return result

    def __repr__(self):
        'Return a nicely formatted representation string'
        return '{typename}({repr_fmt})' % self

    def _asdict(self):
        'Return a new OrderedDict which maps field names to their values'
        return OrderedDict(zip(self._fields, self))

    def _replace(_self, **kwds):
        'Return a new {typename} object replacing specified fields with new values'
        result = _self._make(map(kwds.pop, {field_names!r}, _self))
        if kwds:
            raise ValueError('Got unexpected field names: %r' % kwds.keys())
        return result

    def __getnewargs__(self):
        'Return self as a plain tuple.  Used by copy and pickle.'
        return tuple(self)

    __dict__ = _property(_asdict)

    def __getstate__(self):
        'Exclude the OrderedDict from pickling'
        pass

{field_defs}
'''

_repr_template = '{name}=%r'

_field_template = '''\
    {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}')
'''

def namedtuple(typename, field_names, verbose=False, rename=False):
    """Returns a new subclass of tuple with named fields.

    >>> Point = namedtuple('Point', ['x', 'y'])
    >>> Point.__doc__                   # docstring for the new class
    'Point(x, y)'
    >>> p = Point(11, y=22)             # instantiate with positional args or keywords
    >>> p[0] + p[1]                     # indexable like a plain tuple
    33
    >>> x, y = p                        # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y                       # fields also accessible by name
    33
    >>> d = p._asdict()                 # convert to a dictionary
    >>> d['x']
    11
    >>> Point(**d)                      # convert from a dictionary
    Point(x=11, y=22)
    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
    Point(x=100, y=22)

    """

    # Validate the field names.  At the user's option, either generate an error
    # message or automatically replace the field name with a valid name.
    if isinstance(field_names, basestring):
        field_names = field_names.replace(',', ' ').split()
    field_names = map(str, field_names)
    typename = str(typename)
    if rename:
        seen = set()
        for index, name in enumerate(field_names):
            if (not all(c.isalnum() or c=='_' for c in name)
                or _iskeyword(name)
                or not name
                or name[0].isdigit()
                or name.startswith('_')
                or name in seen):
                field_names[index] = '_%d' % index
            seen.add(name)
    for name in [typename] + field_names:
        if type(name) != str:
            raise TypeError('Type names and field names must be strings')
        if not all(c.isalnum() or c=='_' for c in name):
            raise ValueError('Type names and field names can only contain '
                             'alphanumeric characters and underscores: %r' % name)
        if _iskeyword(name):
            raise ValueError('Type names and field names cannot be a '
                             'keyword: %r' % name)
        if name[0].isdigit():
            raise ValueError('Type names and field names cannot start with '
                             'a number: %r' % name)
    seen = set()
    for name in field_names:
        if name.startswith('_') and not rename:
            raise ValueError('Field names cannot start with an underscore: '
                             '%r' % name)
        if name in seen:
            raise ValueError('Encountered duplicate field name: %r' % name)
        seen.add(name)

    # Fill-in the class template
    class_definition = _class_template.format(
        typename = typename,
        field_names = tuple(field_names),
        num_fields = len(field_names),
        arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
        repr_fmt = ', '.join(_repr_template.format(name=name)
                             for name in field_names),
        field_defs = '\n'.join(_field_template.format(index=index, name=name)
                               for index, name in enumerate(field_names))
    )
    if verbose:
        print class_definition

    # Execute the template string in a temporary namespace and support
    # tracing utilities by setting a value for frame.f_globals['__name__']
    namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename,
                     OrderedDict=OrderedDict, _property=property, _tuple=tuple)
    try:
        exec class_definition in namespace
    except SyntaxError as e:
        raise SyntaxError(e.message + ':\n' + class_definition)
    result = namespace[typename]

    # For pickling to work, the __module__ variable needs to be set to the frame
    # where the named tuple is created.  Bypass this step in environments where
    # sys._getframe is not defined (Jython for example) or sys._getframe is not
    # defined for arguments greater than 0 (IronPython).
    try:
        result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__')
    except (AttributeError, ValueError):
        pass

    return result

這,這,這,這特麼什麼玩意兒啊!沒事,我們慢慢來看。
首先,下面這一部分代碼,將會校驗我們傳入的數據是否符合要求

if isinstance(field_names, basestring):
    field_names = field_names.replace(',', ' ').split()
field_names = map(str, field_names)
typename = str(typename)
if rename:
    seen = set()
    for index, name in enumerate(field_names):
        if (not all(c.isalnum() or c=='_' for c in name)
            or _iskeyword(name)
            or not name
            or name[0].isdigit()
            or name.startswith('_')
            or name in seen):
            field_names[index] = '_%d' % index
        seen.add(name)
for name in [typename] + field_names:
    if type(name) != str:
        raise TypeError('Type names and field names must be strings')
    if not all(c.isalnum() or c=='_' for c in name):
        raise ValueError('Type names and field names can only contain '
                         'alphanumeric characters and underscores: %r' % name)
    if _iskeyword(name):
        raise ValueError('Type names and field names cannot be a '
                         'keyword: %r' % name)
    if name[0].isdigit():
        raise ValueError('Type names and field names cannot start with '
                         'a number: %r' % name)
seen = set()
for name in field_names:
    if name.startswith('_') and not rename:
        raise ValueError('Field names cannot start with an underscore: '
                         '%r' % name)
    if name in seen:
        raise ValueError('Encountered duplicate field name: %r' % name)
    seen.add(name)

接著,便是我們 namedtuple 的核心代碼

class_definition = _class_template.format(
    typename = typename,
    field_names = tuple(field_names),
    num_fields = len(field_names),
    arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
    repr_fmt = ', '.join(_repr_template.format(name=name)
                         for name in field_names),
    field_defs = '\n'.join(_field_template.format(index=index, name=name)
                           for index, name in enumerate(field_names))
)
if verbose:
    print class_definition

# Execute the template string in a temporary namespace and support
# tracing utilities by setting a value for frame.f_globals['__name__']
namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename,
                 OrderedDict=OrderedDict, _property=property, _tuple=tuple)
try:
    exec class_definition in namespace
except SyntaxError as e:
    raise SyntaxError(e.message + ':\n' + class_definition)
result = namespace[typename]

你是不是想說,what the fuck!我知道,class_definition_repr_template_field_template 是前面所定義的字符串模板

_class_template = '''\
class {typename}(tuple):
    '{typename}({arg_list})'

    __slots__ = ()

    _fields = {field_names!r}

    def __new__(_cls, {arg_list}):
        'Create new instance of {typename}({arg_list})'
        return _tuple.__new__(_cls, ({arg_list}))

    @classmethod
    def _make(cls, iterable, new=tuple.__new__, len=len):
        'Make a new {typename} object from a sequence or iterable'
        result = new(cls, iterable)
        if len(result) != {num_fields:d}:
            raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result))
        return result

    def __repr__(self):
        'Return a nicely formatted representation string'
        return '{typename}({repr_fmt})' % self

    def _asdict(self):
        'Return a new OrderedDict which maps field names to their values'
        return OrderedDict(zip(self._fields, self))

    def _replace(_self, **kwds):
        'Return a new {typename} object replacing specified fields with new values'
        result = _self._make(map(kwds.pop, {field_names!r}, _self))
        if kwds:
            raise ValueError('Got unexpected field names: %r' % kwds.keys())
        return result

    def __getnewargs__(self):
        'Return self as a plain tuple.  Used by copy and pickle.'
        return tuple(self)

    __dict__ = _property(_asdict)

    def __getstate__(self):
        'Exclude the OrderedDict from pickling'
        pass

{field_defs}
'''

_repr_template = '{name}=%r'

_field_template = '''\
    {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}')
'''

但是其餘的是什么鬼啊!別急,字符串模板我們先放在一邊,我們先來看看後面的一段代碼

namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename,
                     OrderedDict=OrderedDict, _property=property, _tuple=tuple)
try:
    exec class_definition in namespace
except SyntaxError as e:
    raise SyntaxError(e.message + ':\n' + class_definition)
result = namespace[typename]

在這段代碼中,首先 namespace 變量是個字典,裡面設置了一些變量的存在,緊接就是 exec class_definition in namespace 。眾所周知,Python 是一門動態語言,在 Python 中,解釋器允許我們在運行時,生成一些包含了符合 Python 語法語句的字符串,並用 exec 將其作為 Python 代碼進行執行。同時在我們生成一些語句字符串的時候,我們可能會使用一些自定義的變量,於是,我們需要提供一個 dict 供其進行變量的查找。知道前面這些知識點後,exec class_definition in namespace 的作用是不是就很清楚了捏。
好了,我們再回過頭去看 class_definition 定義。不過我們直接看未格式化之前的模板未免的太過於枯燥和難懂了,我們乾脆以前面舉過的一個例子來看看格式化後的 class_definition 吧~

class fuck(tuple):
    'fuck(x, y)'

    __slots__ = ()

    _fields = ('x', 'y')

    def __new__(_cls, x, y):
        'Create new instance of fuck(x, y)'
        return _tuple.__new__(_cls, (x, y))

    @classmethod
    def _make(cls, iterable, new=tuple.__new__, len=len):
        'Make a new fuck object from a sequence or iterable'
        result = new(cls, iterable)
        if len(result) != 2:
            raise TypeError('Expected 2 arguments, got %d' % len(result))
        return result

    def __repr__(self):
        'Return a nicely formatted representation string'
        return 'fuck(x=%r, y=%r)' % self

    def _asdict(self):
        'Return a new OrderedDict which maps field names to their values'
        return OrderedDict(zip(self._fields, self))

    def _replace(_self, **kwds):
        'Return a new fuck object replacing specified fields with new values'
        result = _self._make(map(kwds.pop, ('x', 'y'), _self))
        if kwds:
            raise ValueError('Got unexpected field names: %r' % kwds.keys())
        return result

    def __getnewargs__(self):
        'Return self as a plain tuple.  Used by copy and pickle.'
        return tuple(self)

    __dict__ = _property(_asdict)

    def __getstate__(self):
        'Exclude the OrderedDict from pickling'
        pass

    x = _property(_itemgetter(0), doc='Alias for field number 0')

    y = _property(_itemgetter(1), doc='Alias for field number 1')

好了,讓我們一點點來分析,首先 class fuck(tuple) 指明我們創建的 fuck 類是繼承自 tuple 。緊接著 __new__ 是 Python 對象系統中的一個特殊方法,用於我們的實例化的操作,其在 __init__ 之前便被觸發,其是一個特殊的靜態方法,我們可以將其用於實例緩存等特殊的功能。在這裡,__new__ 將會返回一個 tuple 的實例。
接下來的是是一些特殊的私有方法,代碼很好懂,我們就不細講了,接著我們來看看這樣一段代碼

x = _property(_itemgetter(0), doc='Alias for field number 0')

y = _property(_itemgetter(1), doc='Alias for field number 1')

你可能還不知道這兩段代碼用來是幹什麼的 233,沒事兒,我們慢慢來。
還記得前面我們舉過的一個例子麼

if __name__ == '__main__':
    fuck=namedtuple("fuck", ['x', 'y'])
    a=fuck(1,2)
    print(a.x)
    print(a.y)

你可能會突發奇想,要是我們執行 a.x=1 這樣的操作會怎樣呢?OK,你會發現,Python 會拋出一個異常叫做 AttributeError: can't set attribute ,嗯哼,講到這裡,你可能就知道前面提到的包含 property 的兩行代碼作用就是保證 namedtupleimmutable 的特性。那么你可能還是不知道這是為什麼。這和 Python 增加的描述符機制有關

擴展(1):Python 中的描述符#

首先我們要明確一點,描述符指的是實現了描述符協議的特殊的類,三個描述符協議指的是 __get__ , 'set' , __delete__ 以及 Python 3.6 中新增的 __set_name__ 方法,其中實現了 __get__ 以及 __set__ / __delete__ / __set_name__ 的是 Data descriptors ,而只實現了 __get__ 的是 Non-Data descriptor 。那麼有什麼區別呢,前面說了, 我們如果調用一個屬性,那麼其順序是優先從實例的 __dict__ 裡查找,然後如果沒有查找到的話,那麼一次查詢類字典,父類字典,直到徹底查不到為止。 但是,這裡沒有考慮描述符的因素進去,如果將描述符因素考慮進去,那麼正確的表述應該是我們如果調用一個屬性,那麼其順序是優先從實例的 __dict__ 裡查找,然後如果沒有查找到的話,那麼一次查詢類字典,父類字典,直到徹底查不到為止。其中如果在類實例字典中的該屬性是一個 Data descriptors ,那麼無論實例字典中存在該屬性與否,無條件走描述符協議進行調用,在類實例字典中的該屬性是一個 Non-Data descriptors ,那麼優先調用實例字典中的屬性值而不觸發描述符協議,如果實例字典中不存在該屬性值,那麼觸發 Non-Data descriptor 的描述符協議

可能這講完了,你還是不清楚和前面問題有什麼關聯,沒事兒,我們接下來會講講 property 的實現

擴展(2):Property 详解#

首先我們來看看關於 Property 的實現

class Property(object):
    "Emulate PyProperty_Type() in Objects/descrobject.c"
    def __init__(self, fget=None, fset=None, fdel=None, doc=None):
        self.fget = fget
        self.fset = fset
        self.fdel = fdel
        if doc is None and fget is not None:
            doc = fget.__doc__
        self.__doc__ = doc

    def __get__(self, obj, objtype=None):
        if obj is None:
            return self
        if self.fget is None:
            raise AttributeError("unreadable attribute")
        return self.fget(obj)

    def __set__(self, obj, value):
        if self.fset is None:
            raise AttributeError("can't set attribute")
        self.fset(obj, value)

    def __delete__(self, obj):
        if self.fdel is None:
            raise AttributeError("can't delete attribute")
        self.fdel(obj)

    def getter(self, fget):
        return type(self)(fget, self.fset, self.fdel, self.__doc__)

    def setter(self, fset):
        return type(self)(self.fget, fset, self.fdel, self.__doc__)

    def deleter(self, fdel):
        return type(self)(self.fget, self.fset, fdel, self.__doc__)

當我們執行完這兩句語句時

x = _property(_itemgetter(0), doc='Alias for field number 0')

y = _property(_itemgetter(1), doc='Alias for field number 1')

我們的 xy 就變成了一個 property 對象的實例,它們也是一個描述符,還記得我們前面講的麼,當一個變量 / 成員成為一個描述符後,它將改變正常的調用邏輯,現在當我們 a.x=1 的時候,因為我們的 x 是一個 Data descriptors ,那麼不管我們的實例字典中是否有 x 的存在,我們都會觸發其 __set__ 方法,由於在我們初始化 xy 兩個變量時,沒有給予其傳入 fset 的方法,因此,我們 __set__ 方法在運行過程中將會拋出 AttributeError("can't set attribute") 的異常,這也保證了 namedtuple 遵循了 tupleimmutable 的特性!是不是很優美!Amazing!

吐槽向#

其實很多人不知道我為什麼選擇 namedtuple 來作為本期的主題,其實很簡單呀,namedtuple 中預定義模板,格式化,然後用 exec 函數進行執行這一套方法,是目前 Python 中主流模板引擎的核心原理。某種意義上講,你在吃透這一點後,你也掌握了怎樣去實現一個簡易模板引擎的方法,如果大家有興趣,我們可以下次一起來寫一個簡單的模板引擎。還有就是在 namedtuple 對於 Python 中的一些高階特性使用的簡直優美無比,這也是我們學習的好例子。

最後的最後,作為另一個寫的非常優美的例子,我將 orderdict 的代碼貼出來,大家可以下來看看,然後評論區我們討論一個!

class OrderedDict(dict):
    'Dictionary that remembers insertion order'
    # An inherited dict maps keys to values.
    # The inherited dict provides __getitem__, __len__, __contains__, and get.
    # The remaining methods are order-aware.
    # Big-O running times for all methods are the same as regular dictionaries.

    # The internal self.__map dict maps keys to links in a doubly linked list.
    # The circular doubly linked list starts and ends with a sentinel element.
    # The sentinel element never gets deleted (this simplifies the algorithm).
    # Each link is stored as a list of length three:  [PREV, NEXT, KEY].

    def __init__(*args, **kwds):
        '''Initialize an ordered dictionary.  The signature is the same as
        regular dictionaries, but keyword arguments are not recommended because
        their insertion order is arbitrary.

        '''
        if not args:
            raise TypeError("descriptor '__init__' of 'OrderedDict' object "
                            "needs an argument")
        self = args[0]
        args = args[1:]
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        try:
            self.__root
        except AttributeError:
            self.__root = root = []                     # sentinel node
            root[:] = [root, root, None]
            self.__map = {}
        self.__update(*args, **kwds)

    def __setitem__(self, key, value, dict_setitem=dict.__setitem__):
        'od.__setitem__(i, y) <==> od[i]=y'
        # Setting a new item creates a new link at the end of the linked list,
        # and the inherited dictionary is updated with the new key/value pair.
        if key not in self:
            root = self.__root
            last = root[0]
            last[1] = root[0] = self.__map[key] = [last, root, key]
        return dict_setitem(self, key, value)

    def __delitem__(self, key, dict_delitem=dict.__delitem__):
        'od.__delitem__(y) <==> del od[y]'
        # Deleting an existing item uses self.__map to find the link which gets
        # removed by updating the links in the predecessor and successor nodes.
        dict_delitem(self, key)
        link_prev, link_next, _ = self.__map.pop(key)
        link_prev[1] = link_next                        # update link_prev[NEXT]
        link_next[0] = link_prev                        # update link_next[PREV]

    def __iter__(self):
        'od.__iter__() <==> iter(od)'
        # Traverse the linked list in order.
        root = self.__root
        curr = root[1]                                  # start at the first node
        while curr is not root:
            yield curr[2]                               # yield the curr[KEY]
            curr = curr[1]                              # move to next node

    def __reversed__(self):
        'od.__reversed__() <==> reversed(od)'
        # Traverse the linked list in reverse order.
        root = self.__root
        curr = root[0]                                  # start at the last node
        while curr is not root:
            yield curr[2]                               # yield the curr[KEY]
            curr = curr[0]                              # move to previous node

    def clear(self):
        'od.clear() -> None.  Remove all items from od.'
        root = self.__root
        root[:] = [root, root, None]
        self.__map.clear()
        dict.clear(self)

    # -- the following methods do not depend on the internal structure --

    def keys(self):
        'od.keys() -> list of keys in od'
        return list(self)

    def values(self):
        'od.values() -> list of values in od'
        return [self[key] for key in self]

    def items(self):
        'od.items() -> list of (key, value) pairs in od'
        return [(key, self[key]) for key in self]

    def iterkeys(self):
        'od.iterkeys() -> an iterator over the keys in od'
        return iter(self)

    def itervalues(self):
        'od.itervalues -> an iterator over the values in od'
        for k in self:
            yield self[k]

    def iteritems(self):
        'od.iteritems -> an iterator over the (key, value) pairs in od'
        for k in self:
            yield (k, self[k])

    update = MutableMapping.update

    __update = update # let subclasses override update without breaking __init__

    __marker = object()

    def pop(self, key, default=__marker):
        '''od.pop(k[,d]) -> v, remove specified key and return the corresponding
        value.  If key is not found, d is returned if given, otherwise KeyError
        is raised.

        '''
        if key in self:
            result = self[key]
            del self[key]
            return result
        if default is self.__marker:
            raise KeyError(key)
        return default

    def setdefault(self, key, default=None):
        'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
        if key in self:
            return self[key]
        self[key] = default
        return default

    def popitem(self, last=True):
        '''od.popitem() -> (k, v), return and remove a (key, value) pair.
        Pairs are returned in LIFO order if last is true or FIFO order if false.

        '''
        if not self:
            raise KeyError('dictionary is empty')
        key = next(reversed(self) if last else iter(self))
        value = self.pop(key)
        return key, value

    def __repr__(self, _repr_running={}):
        'od.__repr__() <==> repr(od)'
        call_key = id(self), _get_ident()
        if call_key in _repr_running:
            return '...'
        _repr_running[call_key] = 1
        try:
            if not self:
                return '%s()' % (self.__class__.__name__,)
            return '%s(%r)' % (self.__class__.__name__, self.items())
        finally:
            del _repr_running[call_key]

    def __reduce__(self):
        'Return state information for pickling'
        items = [[k, self[k]] for k in self]
        inst_dict = vars(self).copy()
        for k in vars(OrderedDict()):
            inst_dict.pop(k, None)
        if inst_dict:
            return (self.__class__, (items,), inst_dict)
        return self.__class__, (items,)

    def copy(self):
        'od.copy() -> a shallow copy of od'
        return self.__class__(self)

    @classmethod
    def fromkeys(cls, iterable, value=None):
        '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
        If not specified, the value defaults to None.

        '''
        self = cls()
        for key in iterable:
            self[key] = value
        return self

    def __eq__(self, other):
        '''od.__eq__(y) <==> od==y.  Comparison to another OD is order-sensitive
        while comparison to a regular mapping is order-insensitive.

        '''
        if isinstance(other, OrderedDict):
            return dict.__eq__(self, other) and all(_imap(_eq, self, other))
        return dict.__eq__(self, other)

    def __ne__(self, other):
        'od.__ne__(y) <==> od!=y'
        return not self == other

    # -- the following methods support python 3.x style dictionary views --

    def viewkeys(self):
        "od.viewkeys() -> a set-like object providing a view on od's keys"
        return KeysView(self)

    def viewvalues(self):
        "od.viewvalues() -> an object providing a view on od's values"
        return ValuesView(self)

    def viewitems(self):
        "od.viewitems() -> a set-like object providing a view on od's items"
        return ItemsView(self)

參考目錄#

載入中......
此文章數據所有權由區塊鏈加密技術和智能合約保障僅歸創作者所有。