Manjusaka

Manjusaka

听说你会 Python (2):Python 高阶数据结构解析

前言#

之前写过一篇《听说你会 Python ?》的文章,大家反响都还不错,那么我想干脆把这个文章做成一个系列,继续讲解一下 Python 当中那些不为人知的细节吧。然后之前在和师父川爷讨论面试的时候,川爷说了一句 “要是我,我就考考你们怎么去实现一个 namedtuple ,好用,方便,又能区分人”,说者无心,听者有意,我于是决定在这次的文章中,和大家聊一聊 Python 中一个特殊的高阶数据结构, namedtuple 的实现。

Let's begin#

namedtuple#

介绍#

tuple 是 Python 中 内置 的一种特殊的数据结构,它是一种 不可变 的数据集合,我们经常会这样使用它

def test():
    a = (1, 2)
    print(a)
    return a


if __name__ == '__main__':
    b, c = test()
    print(a)

对,很多时候我们会直接使用 tuple 来进行一些数据的打包 / 解包的操作。OK,关于 tuple 的科普就到这里。那么什么是 namedtuple 呢,恩,前面不是说了 tuple 是一种特殊的数据集合么,那么 namedtuple 是其一个进阶(这不是废话么)。它将会基础的 tuple 抽象成一个类,我们将自行定义变量的名称和类的名称,这样我们可以很方便的将其复用并管理。具体的用法我们可以看看下面这个例子

if __name__ == '__main__':
    fuck=namedtuple("fuck", ['x', 'y'])
    a=fuck(1,2)
    print(a.x)
    print(a.y)

恩,这样看起来貌似更直观了点,但是,但是,但是,我猜你肯定想知道 namedtuple 是怎么实现的,那么我们先来看看代码吧

详解#

_class_template = '''\
class {typename}(tuple):
    '{typename}({arg_list})'

    __slots__ = ()

    _fields = {field_names!r}

    def __new__(_cls, {arg_list}):
        'Create new instance of {typename}({arg_list})'
        return _tuple.__new__(_cls, ({arg_list}))

    @classmethod
    def _make(cls, iterable, new=tuple.__new__, len=len):
        'Make a new {typename} object from a sequence or iterable'
        result = new(cls, iterable)
        if len(result) != {num_fields:d}:
            raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result))
        return result

    def __repr__(self):
        'Return a nicely formatted representation string'
        return '{typename}({repr_fmt})' % self

    def _asdict(self):
        'Return a new OrderedDict which maps field names to their values'
        return OrderedDict(zip(self._fields, self))

    def _replace(_self, **kwds):
        'Return a new {typename} object replacing specified fields with new values'
        result = _self._make(map(kwds.pop, {field_names!r}, _self))
        if kwds:
            raise ValueError('Got unexpected field names: %r' % kwds.keys())
        return result

    def __getnewargs__(self):
        'Return self as a plain tuple.  Used by copy and pickle.'
        return tuple(self)

    __dict__ = _property(_asdict)

    def __getstate__(self):
        'Exclude the OrderedDict from pickling'
        pass

{field_defs}
'''

_repr_template = '{name}=%r'

_field_template = '''\
    {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}')
'''

def namedtuple(typename, field_names, verbose=False, rename=False):
    """Returns a new subclass of tuple with named fields.

    >>> Point = namedtuple('Point', ['x', 'y'])
    >>> Point.__doc__                   # docstring for the new class
    'Point(x, y)'
    >>> p = Point(11, y=22)             # instantiate with positional args or keywords
    >>> p[0] + p[1]                     # indexable like a plain tuple
    33
    >>> x, y = p                        # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y                       # fields also accessible by name
    33
    >>> d = p._asdict()                 # convert to a dictionary
    >>> d['x']
    11
    >>> Point(**d)                      # convert from a dictionary
    Point(x=11, y=22)
    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
    Point(x=100, y=22)

    """

    # Validate the field names.  At the user's option, either generate an error
    # message or automatically replace the field name with a valid name.
    if isinstance(field_names, basestring):
        field_names = field_names.replace(',', ' ').split()
    field_names = map(str, field_names)
    typename = str(typename)
    if rename:
        seen = set()
        for index, name in enumerate(field_names):
            if (not all(c.isalnum() or c=='_' for c in name)
                or _iskeyword(name)
                or not name
                or name[0].isdigit()
                or name.startswith('_')
                or name in seen):
                field_names[index] = '_%d' % index
            seen.add(name)
    for name in [typename] + field_names:
        if type(name) != str:
            raise TypeError('Type names and field names must be strings')
        if not all(c.isalnum() or c=='_' for c in name):
            raise ValueError('Type names and field names can only contain '
                             'alphanumeric characters and underscores: %r' % name)
        if _iskeyword(name):
            raise ValueError('Type names and field names cannot be a '
                             'keyword: %r' % name)
        if name[0].isdigit():
            raise ValueError('Type names and field names cannot start with '
                             'a number: %r' % name)
    seen = set()
    for name in field_names:
        if name.startswith('_') and not rename:
            raise ValueError('Field names cannot start with an underscore: '
                             '%r' % name)
        if name in seen:
            raise ValueError('Encountered duplicate field name: %r' % name)
        seen.add(name)

    # Fill-in the class template
    class_definition = _class_template.format(
        typename = typename,
        field_names = tuple(field_names),
        num_fields = len(field_names),
        arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
        repr_fmt = ', '.join(_repr_template.format(name=name)
                             for name in field_names),
        field_defs = '\n'.join(_field_template.format(index=index, name=name)
                               for index, name in enumerate(field_names))
    )
    if verbose:
        print class_definition

    # Execute the template string in a temporary namespace and support
    # tracing utilities by setting a value for frame.f_globals['__name__']
    namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename,
                     OrderedDict=OrderedDict, _property=property, _tuple=tuple)
    try:
        exec class_definition in namespace
    except SyntaxError as e:
        raise SyntaxError(e.message + ':\n' + class_definition)
    result = namespace[typename]

    # For pickling to work, the __module__ variable needs to be set to the frame
    # where the named tuple is created.  Bypass this step in environments where
    # sys._getframe is not defined (Jython for example) or sys._getframe is not
    # defined for arguments greater than 0 (IronPython).
    try:
        result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__')
    except (AttributeError, ValueError):
        pass

    return result

这,这,这,这特么什么玩意儿啊!没事,我们慢慢来看。
首先,下面这一部分代码,将会校验我们传入的数据是否符合要求

if isinstance(field_names, basestring):
    field_names = field_names.replace(',', ' ').split()
field_names = map(str, field_names)
typename = str(typename)
if rename:
    seen = set()
    for index, name in enumerate(field_names):
        if (not all(c.isalnum() or c=='_' for c in name)
            or _iskeyword(name)
            or not name
            or name[0].isdigit()
            or name.startswith('_')
            or name in seen):
            field_names[index] = '_%d' % index
        seen.add(name)
for name in [typename] + field_names:
    if type(name) != str:
        raise TypeError('Type names and field names must be strings')
    if not all(c.isalnum() or c=='_' for c in name):
        raise ValueError('Type names and field names can only contain '
                         'alphanumeric characters and underscores: %r' % name)
    if _iskeyword(name):
        raise ValueError('Type names and field names cannot be a '
                         'keyword: %r' % name)
    if name[0].isdigit():
        raise ValueError('Type names and field names cannot start with '
                         'a number: %r' % name)
seen = set()
for name in field_names:
    if name.startswith('_') and not rename:
        raise ValueError('Field names cannot start with an underscore: '
                         '%r' % name)
    if name in seen:
        raise ValueError('Encountered duplicate field name: %r' % name)
    seen.add(name)

接着,便是我们 namedtuple 的核心代码

class_definition = _class_template.format(
    typename = typename,
    field_names = tuple(field_names),
    num_fields = len(field_names),
    arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
    repr_fmt = ', '.join(_repr_template.format(name=name)
                         for name in field_names),
    field_defs = '\n'.join(_field_template.format(index=index, name=name)
                           for index, name in enumerate(field_names))
)
if verbose:
    print class_definition

# Execute the template string in a temporary namespace and support
# tracing utilities by setting a value for frame.f_globals['__name__']
namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename,
                 OrderedDict=OrderedDict, _property=property, _tuple=tuple)
try:
    exec class_definition in namespace
except SyntaxError as e:
    raise SyntaxError(e.message + ':\n' + class_definition)
result = namespace[typename]

你是不是想说,what the fuck!我知道,class_definition_repr_template_field_template 是前面所定义的字符串模板

_class_template = '''\
class {typename}(tuple):
    '{typename}({arg_list})'

    __slots__ = ()

    _fields = {field_names!r}

    def __new__(_cls, {arg_list}):
        'Create new instance of {typename}({arg_list})'
        return _tuple.__new__(_cls, ({arg_list}))

    @classmethod
    def _make(cls, iterable, new=tuple.__new__, len=len):
        'Make a new {typename} object from a sequence or iterable'
        result = new(cls, iterable)
        if len(result) != {num_fields:d}:
            raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result))
        return result

    def __repr__(self):
        'Return a nicely formatted representation string'
        return '{typename}({repr_fmt})' % self

    def _asdict(self):
        'Return a new OrderedDict which maps field names to their values'
        return OrderedDict(zip(self._fields, self))

    def _replace(_self, **kwds):
        'Return a new {typename} object replacing specified fields with new values'
        result = _self._make(map(kwds.pop, {field_names!r}, _self))
        if kwds:
            raise ValueError('Got unexpected field names: %r' % kwds.keys())
        return result

    def __getnewargs__(self):
        'Return self as a plain tuple.  Used by copy and pickle.'
        return tuple(self)

    __dict__ = _property(_asdict)

    def __getstate__(self):
        'Exclude the OrderedDict from pickling'
        pass

{field_defs}
'''

_repr_template = '{name}=%r'

_field_template = '''\
    {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}')
'''

但是其余的是什么鬼啊!别急,字符串模板我们先放在一边,我们先来看看后面的一段代码

namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename,
                     OrderedDict=OrderedDict, _property=property, _tuple=tuple)
try:
    exec class_definition in namespace
except SyntaxError as e:
    raise SyntaxError(e.message + ':\n' + class_definition)
result = namespace[typename]

在这段代码中,首先 namespace 变量是一个字典,里面设置了一些变量的存在,紧接就是 exec class_definition in namespace 。众所周知,Python 是一门动态语言,在 Python 中,解释器允许我们在运行时,生成一些包含了符合 Python 语法语句的字符串,并用 exec 将其作为 Python 代码进行执行。同时在我们生成一些语句字符串的时候,我们可能会使用一些自定义的变量,于是,我们需要提供一个 dict 供其进行变量的查找。知道前面这些知识点后,exec class_definition in namespace 的作用是不是就很清楚了捏。
好了,我们再回过头去看 class_definition 定义。不过我们直接看未格式化之前的模板未免的太过于枯燥和难懂了,我们干脆以前面举过的一个例子来看看格式化后的 class_definition 吧~

class fuck(tuple):
    'fuck(x, y)'

    __slots__ = ()

    _fields = ('x', 'y')

    def __new__(_cls, x, y):
        'Create new instance of fuck(x, y)'
        return _tuple.__new__(_cls, (x, y))

    @classmethod
    def _make(cls, iterable, new=tuple.__new__, len=len):
        'Make a new fuck object from a sequence or iterable'
        result = new(cls, iterable)
        if len(result) != 2:
            raise TypeError('Expected 2 arguments, got %d' % len(result))
        return result

    def __repr__(self):
        'Return a nicely formatted representation string'
        return 'fuck(x=%r, y=%r)' % self

    def _asdict(self):
        'Return a new OrderedDict which maps field names to their values'
        return OrderedDict(zip(self._fields, self))

    def _replace(_self, **kwds):
        'Return a new fuck object replacing specified fields with new values'
        result = _self._make(map(kwds.pop, ('x', 'y'), _self))
        if kwds:
            raise ValueError('Got unexpected field names: %r' % kwds.keys())
        return result

    def __getnewargs__(self):
        'Return self as a plain tuple.  Used by copy and pickle.'
        return tuple(self)

    __dict__ = _property(_asdict)

    def __getstate__(self):
        'Exclude the OrderedDict from pickling'
        pass

    x = _property(_itemgetter(0), doc='Alias for field number 0')

    y = _property(_itemgetter(1), doc='Alias for field number 1')

好了,让我们一点点来分析,首先 class fuck(tuple) 指明我们创建的 fuck 类是继承自 tuple 。紧接着 __new__ 是 Python 对象系统中的一个特殊方法,用于我们的实例化的操作,其在 __init__ 之前便被触发,其是一个特殊的静态方法,我们可以将其用于实例缓存等特殊的功能。在这里,__new__ 将会返回一个 tuple 的实例。
接下来的是是一些特殊的私有方法,代码很好懂,我们就不细讲了,接着我们来看看这样一段代码

x = _property(_itemgetter(0), doc='Alias for field number 0')

y = _property(_itemgetter(1), doc='Alias for field number 1')

你可能还不知道这两段代码用来是干什么的 233,没事儿,我们慢慢来。
还记得前面我们举过的一个例子么

if __name__ == '__main__':
    fuck=namedtuple("fuck", ['x', 'y'])
    a=fuck(1,2)
    print(a.x)
    print(a.y)

你可能会突发奇想,要是我们执行 a.x=1 这样的操作会怎样呢?OK,你会发现,Python 会抛出一个异常叫做 AttributeError: can't set attribute ,嗯哼,讲到这里,你可能就知道前面提到的包含 property 的两行代码作用就是保证 namedtuple不可变 的特性。那么你可能还是不知道这是为什么。这和 Python 增加的描述符机制有关

扩展(1):Python 中的描述符#

首先我们要明确一点,描述符指的是实现了描述符协议的特殊的类,三个描述符协议指的是 __get__ , 'set' , __delete__ 以及 Python 3.6 中新增的 __set_name__ 方法,其中实现了 __get__ 以及 __set__ / __delete__ / __set_name__ 的是 数据描述符 ,而只实现了 __get__ 的是 非数据描述符 。那么有什么区别呢,前面说了, 我们如果调用一个属性,那么其顺序是优先从实例的 __dict__ 里查找,然后如果没有查找到的话,那么一次查询类字典,父类字典,直到彻底查不到为止。 但是,这里没有考虑描述符的因素进去,如果将描述符因素考虑进去,那么正确的表述应该是我们如果调用一个属性,那么其顺序是优先从实例的 __dict__ 里查找,然后如果没有查找到的话,那么一次查询类字典,父类字典,直到彻底查不到为止。其中如果在类实例字典中的该属性是一个 数据描述符 ,那么无论实例字典中存在该属性与否,无条件走描述符协议进行调用,在类实例字典中的该属性是一个 非数据描述符 ,那么优先调用实例字典中的属性值而不触发描述符协议,如果实例字典中不存在该属性值,那么触发 非数据描述符 的描述符协议

可能这讲完了,你还是不清楚和前面问题有什么关联,没事儿,我们接下来会讲讲 property 的实现

扩展(2):Property 详解#

首先我们来看看关于 Property 的实现

class Property(object):
    "Emulate PyProperty_Type() in Objects/descrobject.c"
    def __init__(self, fget=None, fset=None, fdel=None, doc=None):
        self.fget = fget
        self.fset = fset
        self.fdel = fdel
        if doc is None and fget is not None:
            doc = fget.__doc__
        self.__doc__ = doc

    def __get__(self, obj, objtype=None):
        if obj is None:
            return self
        if self.fget is None:
            raise AttributeError("unreadable attribute")
        return self.fget(obj)

    def __set__(self, obj, value):
        if self.fset is None:
            raise AttributeError("can't set attribute")
        self.fset(obj, value)

    def __delete__(self, obj):
        if self.fdel is None:
            raise AttributeError("can't delete attribute")
        self.fdel(obj)

    def getter(self, fget):
        return type(self)(fget, self.fset, self.fdel, self.__doc__)

    def setter(self, fset):
        return type(self)(self.fget, fset, self.fdel, self.__doc__)

    def deleter(self, fdel):
        return type(self)(self.fget, self.fset, fdel, self.__doc__)

当我们执行完这两句语句时

x = _property(_itemgetter(0), doc='Alias for field number 0')

y = _property(_itemgetter(1), doc='Alias for field number 1')

我们的 xy 就变成了一个 property 对象的实例,它们也是一个描述符,还记得我们前面讲的么,当一个变量 / 成员成为一个描述符后,它将改变正常的调用逻辑,现在当我们 a.x=1 的时候,因为我们的 x 是一个 数据描述符 ,那么不管我们的实例字典中是否有 x 的存在,我们都会触发其 __set__ 方法,由于在我们初始化 xy 两个变量时,没有给予其传入 fset 的方法,因此,我们 __set__ 方法在运行过程中将会抛出 AttributeError("can't set attribute") 的异常,这也保证了 namedtuple 遵循了 tuple不可变 的特性!是不是很优美!Amazing!

吐槽向#

其实很多人不知道我为什么选择 namedtuple 来作为本期的主题,其实很简单呀,namedtuple 中预定义模板,格式化,然后用 exec 函数进行执行这一套方法,是目前 Python 中主流模板引擎的核心原理。某种意义上讲,你在吃透这一点后,你也掌握了怎样去实现一个简易模板引擎的方法,如果大家有兴趣,我们可以下次一起来写一个简单的模板引擎。还有就是在 namedtuple 对于 Python 中的一些高阶特性使用的简直优美无比,这也是我们学习的好例子。

最后的最后,作为另一个写的非常优美的例子,我将 orderdict 的代码贴出来,大家可以下来看看,然后评论区我们讨论一个!

class OrderedDict(dict):
    'Dictionary that remembers insertion order'
    # An inherited dict maps keys to values.
    # The inherited dict provides __getitem__, __len__, __contains__, and get.
    # The remaining methods are order-aware.
    # Big-O running times for all methods are the same as regular dictionaries.

    # The internal self.__map dict maps keys to links in a doubly linked list.
    # The circular doubly linked list starts and ends with a sentinel element.
    # The sentinel element never gets deleted (this simplifies the algorithm).
    # Each link is stored as a list of length three:  [PREV, NEXT, KEY].

    def __init__(*args, **kwds):
        '''Initialize an ordered dictionary.  The signature is the same as
        regular dictionaries, but keyword arguments are not recommended because
        their insertion order is arbitrary.

        '''
        if not args:
            raise TypeError("descriptor '__init__' of 'OrderedDict' object "
                            "needs an argument")
        self = args[0]
        args = args[1:]
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        try:
            self.__root
        except AttributeError:
            self.__root = root = []                     # sentinel node
            root[:] = [root, root, None]
            self.__map = {}
        self.__update(*args, **kwds)

    def __setitem__(self, key, value, dict_setitem=dict.__setitem__):
        'od.__setitem__(i, y) <==> od[i]=y'
        # Setting a new item creates a new link at the end of the linked list,
        # and the inherited dictionary is updated with the new key/value pair.
        if key not in self:
            root = self.__root
            last = root[0]
            last[1] = root[0] = self.__map[key] = [last, root, key]
        return dict_setitem(self, key, value)

    def __delitem__(self, key, dict_delitem=dict.__delitem__):
        'od.__delitem__(y) <==> del od[y]'
        # Deleting an existing item uses self.__map to find the link which gets
        # removed by updating the links in the predecessor and successor nodes.
        dict_delitem(self, key)
        link_prev, link_next, _ = self.__map.pop(key)
        link_prev[1] = link_next                        # update link_prev[NEXT]
        link_next[0] = link_prev                        # update link_next[PREV]

    def __iter__(self):
        'od.__iter__() <==> iter(od)'
        # Traverse the linked list in order.
        root = self.__root
        curr = root[1]                                  # start at the first node
        while curr is not root:
            yield curr[2]                               # yield the curr[KEY]
            curr = curr[1]                              # move to next node

    def __reversed__(self):
        'od.__reversed__() <==> reversed(od)'
        # Traverse the linked list in reverse order.
        root = self.__root
        curr = root[0]                                  # start at the last node
        while curr is not root:
            yield curr[2]                               # yield the curr[KEY]
            curr = curr[0]                              # move to previous node

    def clear(self):
        'od.clear() -> None.  Remove all items from od.'
        root = self.__root
        root[:] = [root, root, None]
        self.__map.clear()
        dict.clear(self)

    # -- the following methods do not depend on the internal structure --

    def keys(self):
        'od.keys() -> list of keys in od'
        return list(self)

    def values(self):
        'od.values() -> list of values in od'
        return [self[key] for key in self]

    def items(self):
        'od.items() -> list of (key, value) pairs in od'
        return [(key, self[key]) for key in self]

    def iterkeys(self):
        'od.iterkeys() -> an iterator over the keys in od'
        return iter(self)

    def itervalues(self):
        'od.itervalues -> an iterator over the values in od'
        for k in self:
            yield self[k]

    def iteritems(self):
        'od.iteritems -> an iterator over the (key, value) pairs in od'
        for k in self:
            yield (k, self[k])

    update = MutableMapping.update

    __update = update # let subclasses override update without breaking __init__

    __marker = object()

    def pop(self, key, default=__marker):
        '''od.pop(k[,d]) -> v, remove specified key and return the corresponding
        value.  If key is not found, d is returned if given, otherwise KeyError
        is raised.

        '''
        if key in self:
            result = self[key]
            del self[key]
            return result
        if default is self.__marker:
            raise KeyError(key)
        return default

    def setdefault(self, key, default=None):
        'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
        if key in self:
            return self[key]
        self[key] = default
        return default

    def popitem(self, last=True):
        '''od.popitem() -> (k, v), return and remove a (key, value) pair.
        Pairs are returned in LIFO order if last is true or FIFO order if false.

        '''
        if not self:
            raise KeyError('dictionary is empty')
        key = next(reversed(self) if last else iter(self))
        value = self.pop(key)
        return key, value

    def __repr__(self, _repr_running={}):
        'od.__repr__() <==> repr(od)'
        call_key = id(self), _get_ident()
        if call_key in _repr_running:
            return '...'
        _repr_running[call_key] = 1
        try:
            if not self:
                return '%s()' % (self.__class__.__name__,)
            return '%s(%r)' % (self.__class__.__name__, self.items())
        finally:
            del _repr_running[call_key]

    def __reduce__(self):
        'Return state information for pickling'
        items = [[k, self[k]] for k in self]
        inst_dict = vars(self).copy()
        for k in vars(OrderedDict()):
            inst_dict.pop(k, None)
        if inst_dict:
            return (self.__class__, (items,), inst_dict)
        return self.__class__, (items,)

    def copy(self):
        'od.copy() -> a shallow copy of od'
        return self.__class__(self)

    @classmethod
    def fromkeys(cls, iterable, value=None):
        '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
        If not specified, the value defaults to None.

        '''
        self = cls()
        for key in iterable:
            self[key] = value
        return self

    def __eq__(self, other):
        '''od.__eq__(y) <==> od==y.  Comparison to another OD is order-sensitive
        while comparison to a regular mapping is order-insensitive.

        '''
        if isinstance(other, OrderedDict):
            return dict.__eq__(self, other) and all(_imap(_eq, self, other))
        return dict.__eq__(self, other)

    def __ne__(self, other):
        'od.__ne__(y) <==> od!=y'
        return not self == other

    # -- the following methods support python 3.x style dictionary views --

    def viewkeys(self):
        "od.viewkeys() -> a set-like object providing a view on od's keys"
        return KeysView(self)

    def viewvalues(self):
        "od.viewvalues() -> an object providing a view on od's values"
        return ValuesView(self)

    def viewitems(self):
        "od.viewitems() -> a set-like object providing a view on od's items"
        return ItemsView(self)

参考目录#

加载中...
此文章数据所有权由区块链加密技术和智能合约保障仅归创作者所有。